
		Seite
Produktübersicht	Kreuzrollenlager	798
Merkmale	Rollen in X-Anordnung	799
	Betriebstemperatur	800
	Nachsetzzeichen	800
Konstruktions- und	Statische Tragfähigkeit	800
Sicherheitshinweise	Statische Tragfähigkeit überprüfen	800
	Anwendungsfaktoren	804
	Sicherheitsfaktoren	804
	Dynamische Tragfähigkeit	804
	Nominelle Lebensdauer ermitteln	805
	Tragfähigkeit der Befestigungsschrauben	807
	Statische Tragfähigkeit der Schrauben überprüfen	808
	Dynamische Tragfähigkeit der Schrauben überprüfen	808
	Wellen- und Gehäusetoleranzen für Normalanwendungen	809
	$Wellen-undGeh\"{a}usetoleranzenf\"{u}rPr\"{a}zisionsanwendungen$	809
	Befestigung durch Klemmringe	810
	Befestigungsschrauben	812
	Schraubensicherungen	812
	Kreuzrollenlager einbauen	814
	Funktion prüfen	815
Genauigkeit		815
Maßtabellen	Kreuzrollenlager	816

Produktübersicht – Kreuzrollenlager

Maßreihe 18

Merkmale

Kreuzrollenlager SX sind Lager für Genauigkeitsanwendungen, die in ihren Abmessungen der ISO-Maßreihe 18 nach DIN 616 entsprechen. Sie bestehen aus Außenringen, Innenringen, Wälzkörpern und Kunststoff-Distanzstücken. Der Außenring ist gesprengt und mit drei Halteringen zusammengehalten.

Rollen in X-Anordnung

Durch die X-Anordnung der Zylinderrollen nehmen diese Lager axiale Kräfte aus beiden Richtungen sowie radiale Kräfte, Kippmomentbelastungen und beliebige Lastkombinationen mit einer Lagerstelle auf. Dadurch lassen sich Konstruktionen mit zwei Lagerstellen auf eine reduzieren, Bild 1, Bild 2.

Kreuzrollenlager sind sehr steif, haben eine hohe Laufgenauigkeit und werden mit Normalspiel, spielarm oder vorgespannt geliefert. Vorgespannte Lager haben das Nachsetzzeichen VSP.

Die Fixierung der Lager-Außenringe in der Anschlusskonstruktion erfolgt montagefreundlich durch Klemmringe.

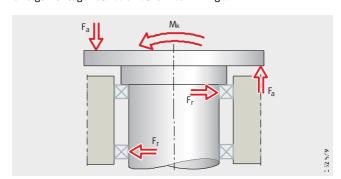


Bild 1 Lagerung mit zwei Lagerstellen

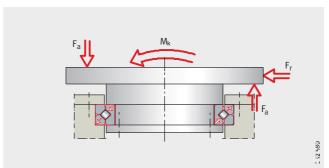
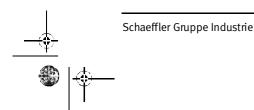



Bild 2 Lagerung mit einem Kreuzrollenlager SX

> Die Umfangsgeschwindigkeit hängt von der Ausführung des Lagers (Normalspiel oder vorgespannt) sowie von der Schmierung (Fett oder Öl) ab, siehe Tabelle Umfangsgeschwindigkeit.

Umfangsgeschwindigkeit

Normalspiel	Vorspannung	Umfangsgeschwindigkeit						
Ölschmierung	-	bis 8 m/s (n \cdot D _M = 152800)						
Fettschmierung	-	bis 4 m/s (n · $D_M = 76400$)						
-	Ölschmierung	bis 4 m/s (n · $D_M = 76400$)						
_	Fettschmierung	bis 2 m/s (n \cdot D _M = 38 200)						

rostges chützt

Kreuzrollenlager gibt es auch rostgeschützt mit der INA-Spezialbeschichtung Corrotect[®]. Diese Lager haben das Nachsetzzeichen RR.

Abdichtung/Schmierstoff

Die Lager sind nicht abgedichtet. Ist eine Abdichtung der Lagerstelle notwendig, so kann diese in der Anschlusskonstruktion frei

Kreuzrollenlager sind ölig konserviert. Lager vor der Inbetriebnahme schmieren.

Bei Fettschmierung ist ein hochwertiges Lithiumseifenfett DIN 51825-KP2N-20 geeignet, z.B. Arcanol LOAD220.

Für Ölschmierung eignen sich Schmieröle CLP nach DIN 51 517 oder HLP nach DIN 51524 der Viskositätsklassen ISO-VG 10 bis 100.

Betriebstemperatur

Kreuzrollenlager sind für Betriebstemperaturen von −30 °C bis +80 °C geeignet.

Nachsetzzeichen

Nachsetzzeichen der lieferbaren Ausführungen siehe Tabelle.

lieferbare Ausführungen

•	Nachsetz- zeichen	Beschreibung	Ausführung
•	RR	rostgeschützte Ausführung, Corrotect®-beschichtet	Sonder- ausführung ¹⁾
	RLO	spielarm	Standard
	VSP	vorgespannt	Standard

¹⁾ Auf Anfrage.

Konstruktions- und Sicherheitshinweise Statische Tragfähigkeit

Kreuzrollenlager mit selten auftretenden Drehbewegungen, mit $langsamen\,Schwenkbewegungen,\,Lager,\,die\,nur\,langsam\,umlaufen$ sowie im Stillstand belastete Lager werden nach ihrer statischen Tragfähigkeit dimensioniert.

Die Größe eines statisch beanspruchten Lagers kann näherungsweise durch die statischen Tragzahlen C₀ und die statischen Grenzlastdiagramme überprüft werden.

Statische Tragfähigkeit überprüfen

Sie kann näherungsweise überprüft werden, wenn eine Lastanordnung nach Bild 3 vorliegt und alle Anforderungen, bezüglich Klemmringe, Befestigung, Einbau und Schmierung erfüllt sind.

Achtung!

Bei komplexeren Lastanordnungen oder Abweichungen von den Bedingungen bitte rückfragen!

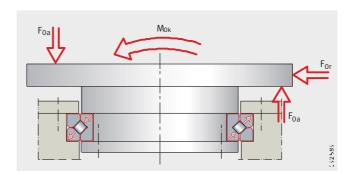
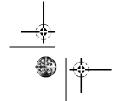



Bild 3 Lastanordnung

Zur Überprüfung der statischen Tragfähigkeit müssen die folgenden statisch äquivalenten Betriebswerte ermittelt werden:

- \blacksquare die statisch äquivalente Lagerbelastung F_{0q}
- die statisch äquivalente Kippmomentbelastung M_{0q}.

Die Überprüfung ist für Anwendungen ohne und mit vorhandener Radiallast möglich.

statisch äquivalente Lagerbelastung bei fehlender Radiallast ermitteln Treten nur Axial- und Kippmomentbelastungen auf, gilt:

$$F_{0q} \triangleq F_{0a} \cdot f_A \cdot f_S$$

$$M_{0q} \triangleq M_{0k} \cdot f_A \cdot f_S$$

F_{Oq} KN äquivalente axiale Lagerbelastung (statisch)

kΝ

statische axiale Lagerbelastung

f_A – Anwendungsfaktor, siehe Tabelle, Seite 804

 $m f_S - Faktor für zusätzliche Sicherheit, siehe Seite 804$

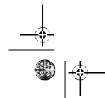
 ${
m M_{0q}}$ kNm äquivalente Kippmomentbelastung (statisch)

kNm

statische Kippmomentbelastung.

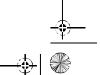
Mit den Werten von $\rm F_{0q}$ und $\rm M_{0q}$ wird der Lastpunkt im statischen Grenzlastdiagramm Laufbahn bestimmt, siehe Maßtabellen.

Zusätzlich zur Laufbahn muss auch die Dimensionierung der Befestigungsschrauben überprüft werden.


Die statischen Grenzlastdiagrame für die Laufbahn und die Befestigungsschrauben sind in den Maßtabellen angegeben.

Achtung!

Der Lastpunkt muss unterhalb der Laufbahnkurve liegen!



statisch äquivalente Lagerbelastung bei vorhandener Radiallast ermitteln

Achtung!

Radiallasten können nur berücksichtigt werden, wenn die Radiallast F_{Or} kleiner ist als die radiale statische Tragzahl C_{Or} nach Maßtabelle!

Die statisch äquivalente Lagerbelastung bei vorhandener Radiallast wird folgendermaßen ermittelt:

- Kennwert der Lastexzentrizität ∈ nach Gleichung berechnen.
- Statischen radialen Lastbeiwert f_{0r} ermitteln. Dazu:
- Verhältnis F_{0r}/F_{0a} in *Bild 4* bzw. *Bild 5* bestimmen
- aus dem Verhältnis F_{0r}/F_{0a} und ϵ den statischen radialen Lastbeiwert f_{0r} aus *Bild 4* bzw. *Bild 5* ermitteln.
- Anwendungsfaktor f_A nach Tabelle, Seite 804 und eventuell notwendigen Sicherheitsfaktor f_S bestimmen.
- \blacksquare Äquivalente axiale Lagerbelastung F_{0q} und äquivalente Kippmomentbelastung M_{0q} nach Gleichungen berechnen.
- \blacksquare Mit den Werten von F_{0q} und M_{0q} den Lastpunkt im statischen Grenzlastdiagramm Laufbahn ermitteln (siehe Maßtabellen).

Achtung!

Der Lastpunkt muss unterhalb der Laufbahnkurve liegen!

$$F_{0q} = F_{0a} \cdot f_A \cdot f_S \cdot f_{0r}$$

$$M_{0q} = M_{0k} \cdot f_A \cdot f_S \cdot f_{0l}$$

Kennwert der Lastexzentrizität

 M_{0k} kNm

statische Kippmomentbelastung

kΝ

F_{0a} kN statische Lagerbelastung (axial)

mm

Wälzkörper-Mittenkreisdurchmesser, siehe Maßtabelle

kΝ

äquivalente Lagerbelastung (statisch)

Anwendungsfaktor, siehe Tabelle, Seite 804

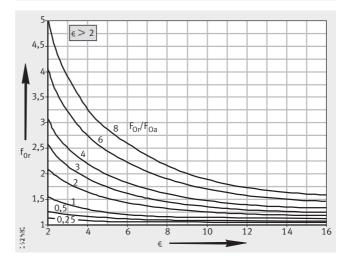
Faktor für zusätzliche Sicherheit, siehe Tabelle, Seite 804

statischer radialer Lastbeiwert, siehe Bild 4 bzw. Bild 5, Seite 803

kNm

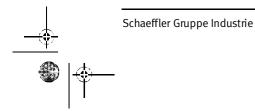
äquivalente Kippmomentbelastung (statisch).

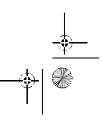
802 | **HR 1**



19 18 17 16 15 14 13 12 11 F_{Or}/F_{Oa} 9 8 f_{0r} 152,582 0,8 0,4 1,0 1,2 1,4 1,6

 f_{Or} = statischer radialer Lastbeiwert ϵ = Kennwert der Lastexzentrizität; $\epsilon \le 2$


Bild 4 statischer radialer Lastbeiwert



 $f_{0r} = statischer radialer Lastbeiwert$ ϵ = Kennwert der Lastexzentrizität; $\epsilon > 2$

Bild 5 statischer radialer Lastbeiwert

Anwendungsfaktoren

Die Anwendungsfaktoren $\boldsymbol{f}_{\boldsymbol{A}}$ nach Tabelle sind Erfahrungswerte aus der Praxis. Sie berücksichtigen die wichtigsten Anforderungen z.B. Art und Schwere des Einsatzes, Steifigkeit, Laufgenauigkeit.

Sind genaue Anforderungen für eine Anwendung bekannt, können die Werte entsprechend verändert werden.

Achtung!

Anwendungsfaktoren < 1 dürfen nicht eingesetzt werden!

Ein großer Teil der Anwendungen kann mit dem Faktor 1 statisch berechnet werden – z.B. Lager für Getriebe, Drehtische.

Neben der statischen Berechnung sollte auch immer die Lebensdauer überprüft werden, siehe Dynamische Tragfähigkeit.

Anwendungsfaktoren fa

Anwendung	Einsatz-/ Anforderungskriterien	Anwendungsfaktor f _A
Roboter	Steifigkeit	1,25
Antennen	Genauigkeit	1,5
Werkzeugmaschinen	Genauigkeit	1,5
Messtechnik	Laufruhe	2
Medizintechnik	Laufruhe	1,5

Sicherheitsfaktoren

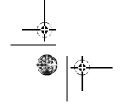
Der Faktor für eine zusätzliche Sicherheit $f_S = 1$.

Im Normalfall muss bei der Berechnung keine zusätzliche Sicherheit

eingerechnet werden.

Achtung!

In Sonderfällen – z.B. Abnahmespezifikationen, werksinternen Vorschriften, Vorgaben von Prüfungsgesellschaften usw. entsprechenden Sicherheitsfaktor einsetzen!


Dynamische Tragfähigkeit

Dynamisch beanspruchte Kreuzrollenlager – d.h. überwiegend rotierend betriebene Lager – werden nach ihrer dynamischen Tragfähigkeit dimensioniert.

Die Größe eines dynamisch beanspruchten Lagers kann näherungsweise durch die dynamischen Tragzahlen C und die nominelle Lebensdauer L oder L_h überprüft werden.

Nominelle Lebensdauer ermitteln

Die Lebensdauer-Gleichungen L und L_h sind nur gültig:

- bei einer Lastanordnung nach *Bild 6*
- wenn alle Anforderungen erfüllt sind bezüglich Befestigung (die Lagerringe müssen starr bzw. fest mit der Anschlusskonstruktion verbunden sein), Einbau, Schmierung und Abdichtung
- wenn Belastung und Drehzahl während des Betriebs als konstant angesehen werden können. Sind Belastung und Drehzahl nicht konstant, können äquivalente Betriebswerte bestimmt werden, die die gleichen Ermüdungen verursachen, wie die tatsächlichen Beanspruchungen (siehe Äquivalente Betriebswerte)
- wenn das Belastungsverhältnis $F_r/F_a \le 8$ ist.

Achtung!

Bei komplexeren Lastanordnungen, einem Verhältnis $F_r/F_a > 8$ oder bei Abweichungen von den genannten Bedingungen bitte rückfragen!

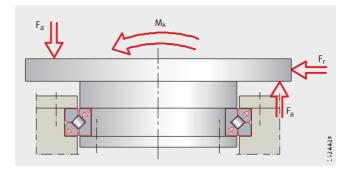
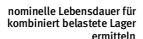
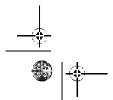
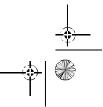




Bild 6 Lastanordnung



Für kombiniert belastete Lager – Lager mit Axial-, Radial- und Kippmomentbelastung – wird die Lebensdauer L und L_h folgendermaßen ermittelt:

- Kennwert der Lastexzentrizität ∈ nach Gleichung berechnen, Seite 806
- Verhältnis der radialen dynamischen Lagerbelastung F_r zur axialen dynamischen Lagerbelastung F_a (F_r/F_a) bestimmen
- Aus den Werten von ∈ und dem Verhältnis F_r/F_a dynamischen Lastfaktor k_F ermitteln, Bild 7, Seite 807
- Dynamisch äquivalente axiale Lagerbelastung $P_{axial} = k_F \cdot F_a$ nach Gleichung berechnen, Seite 806
- Dynamisch äquivalente axiale Lagerbelastung P_{axial} und die axiale dynamische Tragzahl C_a in die Lebensdauergleichungen L bzw. L_h einsetzen und die Lebensdauer berechnen, Seite 806.
 Bei Schwenkbetrieb in die Lebensdauergleichung L_h ermittelte Betriebsdrehzahl n nach Gleichung einsetzen, Seite 806.

Schaeffler Gruppe Industrie

nominelle Lebensdauer für rein radial belastete Lager ermitteln Für rein radial belastete Drehverbindungen werden in die Lebensdauergleichungen L und L_h folgende Werte eingesetzt:

anstelle der dynamisch äquivalenten axialen Lagerbelastung P_{axial} die dynamisch äquivalente radiale Lagerbelastung P_{radial} (d. h. F_r)

$$-P_{radial} = F_r$$

die radiale dynamische Tragzahl C_r.

$$\epsilon = \frac{2000 \cdot M_K}{F_a \cdot D_M}$$

$$P_{axial} = k_F \cdot F_a$$

$$L = \left(\frac{C_a}{P_{axial}}\right)^p \text{ oder } L = \left(\frac{C_r}{P_{radial}}\right)^p$$

$$L_h = \frac{16666}{n} \cdot \left(\frac{C_a}{P_{axial}}\right)^p \text{ oder } L_h = \frac{16666}{n} \cdot \left(\frac{C_r}{P_{radial}}\right)^p$$

$$n = n_{osc} \cdot \frac{\gamma}{90^{\circ}}$$

Kennwert der Lastexzentrizität

kNm

dynamische Kippmomentbelastung

kΝ

dynamische Lagerbelastung (axial)

mm

Wälzkörper-Mittenkreisdurchmesser, siehe Maßtabelle

kΝ

dynamisch äquivalente axiale Lagerbelastung. Für rein radial belastete Lager P_{radial} einsetzen

dynamischer Lastfaktor, siehe Bild 7

10⁶ Umdr.

nominelle Lebensdauer in Millionen Umdrehungen

axiale oder radiale dynamische Tragzahl nach Maßtabelle.

Für rein radial belastete Lager C_reinsetzen

Lebensdauerexponent für Kreuzrollenlager: p = 10/3

nominelle Lebensdauer in Betriebsstunden

 ${\rm min}^{-1}$

Betriebsdrehzahl

 ${\rm min}^{-1}$

n_{osc} mın -Frequenz der Hin- und Herbewegung -

halber Schwenkwinkel

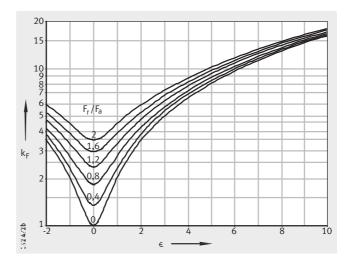
kΝ

dynamisch äquivalente radiale Lagerbelastung

kΝ

dynamische Lagerbelastung (radial).

806 | HR 1



k_F = dynamischer Lastfaktor € = Kennwert der Lastexzentrizität

Bild 7 dynamischer Lastfaktor

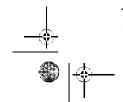
Tragfähigkeit der Befestigungsschrauben

Zusätzlich zur Laufbahn muss auch die Tragfähigkeit der Befestigungsschrauben überprüft werden. Grundlage dafür sind die Angaben im Kapitel Statische Tragfähigkeit, Seite 800.

Die Tragfähigkeit der Befestigungsschrauben kann überprüft werden, wenn folgende Bedingungen erfüllt sind:

- die Kriterien nach dem Kapitel Statische Tragfähigkeit
- die Schrauben werden mit einem Drehmomentschlüssel vorschriftsmäßig angezogen
 - Schraubenanziehfaktor α_A = 1,6, Anziehdrehmomente nach Tabelle, Seite 812 und Seite 813
- die zulässige Flächenpressung ist nicht überschritten
- die empfohlene Schraubengröße, -anzahl und -qualität wird verwendet.

Maß für die Tragfähigkeit


Die Tragfähigkeit der Schrauben wird beschrieben durch:

- die Kurven in den statischen Grenzlastdiagrammen für Befestigungsschrauben in den Maßtabellen
- die maximal zulässige Radialbelastung F_{r zul} (Reibschluss) in den Maßtabellen.

Die Schraubenkurven sind in den statischen Grenzlastdiagrammen Befestigungsschrauben angegeben. Den Kurven liegen Schrauben der Festigkeitsklasse 10.9 zugrunde, angezogen auf 90% der Streckgrenze einschließlich Torsionsanteil.

Werden Schrauben der Festigkeitsklasse 8.8 oder 12.9 eingesetzt, müssen die statisch äquivalenten Belastungen F_{0q} und M_{0q} (siehe Statische Tragfähigkeit, Seite 801) mit folgenden Faktoren umgerechnet werden:

- Festigkeitsklasse 8.8 ($F_{0q} \times 1,65$, $M_{0q} \times 1,65$)
- Festigkeitsklasse 12.9 ($F_{0q} \times 0.8$, $M_{0q} \times 0.8$).

Statische Tragfähigkeit der Schrauben überprüfen

Die Streckgrenze der Schraube begrenzt ihre statische Tragfähig-

statische Tragfähigkeit für Anwendungen ohne und mit Radiallast

Äquivalente statische Lagerbelastungen F_{0q} und M_{0q} bestimmen. Mit den Werten F_{0q} und M_{0q} den Lastpunkt im statischen Grenzlastdiagramm Befestigungsschrauben nach Maßtabelle bestimmen. Der Lastpunkt muss unterhalb der entsprechenden Schraubenkurve liegen.

Einfluss der Radialbelastung auf die statische Tragfähigkeit der Schrauben

Treten bei unzentrierten Lagerringen radiale Belastungen auf, dann muss die Verschraubung auch verhindern, dass sich die Lagerringe auf der Anschlusskonstruktion verschieben.

Um das zu überprüfen:

- radiale Belastung des Lagers mit einem Anwendungsfaktor f_A nach Tabelle, Seite 804, multiplizieren
- ermittelte Werte mit der maximal zulässigen Radialbelastung $F_{r\,zul}$ in den Maßtabellen vergleichen.

Achtung!

Die maximale radiale Belastung F_{r zul} der Befestigungsschrauben hängt von ihrem Reibschluss ab, der für jedes Lager in den Maßtabellen angegeben ist und nicht von der radialen Tragfähigkeit des Lagers!

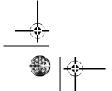
Ist die radiale Belastung des Lagers höher als der Reibschluss der Befestigungsschrauben nach Maßtabelle, oder liegen sehr hohe Radialbelastungen vor $(F_r/F_a > 4)$, bitte rückfragen!

Dynamische Tragfähigkeit der Schrauben überprüfen

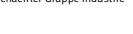
Die dynamische Tragfähigkeit der Schrauben entspricht der Dauerfestigkeit der Schraube.

dynamische Tragfähigkeit

Mit den vorhandenen dynamischen Belastungen werden die äquivalenten Belastungen F_{0q} und M_{0q} ermittelt.


Anstelle des Anwendungsfaktors f_A ist dabei jedoch die Betriebsbelastung immer um folgenden Faktor zu erhöhen:

Festigkeitsklasse 8.8 (Faktor 1,8) Festigkeitsklasse 10.9 (Faktor 1,6) Festigkeitsklasse 12.9 (Faktor 1,5).


Anschließend ist die Tragfähigkeit im statischen Grenzlastdiagramm Befestigungsschrauben zu überprüfen, siehe Maßtabelle.

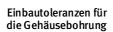
Achtung!

Der Lastpunkt muss unterhalb der entsprechenden Schraubenkurve liegen!

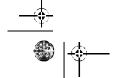
Wellen- und Gehäusetoleranzen für Normalanwendungen

Für Normalanwendungen genügen die Toleranzen K7 für das Gehäuse und h7 für die Welle, siehe Tabellen Einbautoleranzen.

Wellen- und Gehäusetoleranzen für Präzisionsanwendungen


Bei Präzisionsanwendungen ist der Lagersitz im Gehäuse in der Toleranz K6, auf der Welle in h6 auszuführen, siehe Tabellen Einbautoleranzen.

Einbautoleranzen für die Welle


Nennma	ßbereich	Nennabm	Nennabmaße										
>	≦	h6		h7									
mm	mm	oben µm	unten µm	oben µm	unten μm								
65	80	0	-19	0	-30								
80	100	0	-22	0	-35								
100	120	0	-22	0	-35								
120	140	0	-25	0	-40								
140	160	0	-25	0	-40								
160	180	0	-25	0	-40								
180	200	0	-29	0	-46								
200	225	0	-29	0	-46								
225	250	0	-29	0	-46								
250	280	0	-32	0	-52								
280	315	0	-32	0	-52								
315	355	0	-36	0	-57								
355	400	0	-36	0	-57								
400	450	0	-40	0	-63								
450	500	0	-40	0	-63								

Nennma	ßbereich	Nennabm	Nennabmaße									
>	≦	K6		K7								
mm	mm	oben _ւ տ	unten မှာm	oben μm	unten µm							
80	100	+4	-18	+10	-25							
100	120	+4	-18	+10	-25							
120	140	+4	-21	+12	-28							
140	160	+4	-21	+12	-28							
160	180	+4	-21	+12	-28							
180	200	+5	-24	+13	-33							
200	225	+5	-24	+13	-33							
225	250	+5	-24	+13	-33							
250	280	+5	-27	+16	-36							
280	315	+5	-27	+16	-36							
315	355	+7	-29	+17	-40							
355	400	+7	-29	+17	-40							
400	450	+8	-32	+18	-45							
450	500	+8	-32	+18	-45							
500	560	0	-44	0	-70							
560	630	0	-44	0	-70							

Befestigung durch Klemmringe

Zum Befestigen der Kreuzrollenlager SX haben sich Klemmringe bewährt, Bild 8, Seite 811.

Achtung!

Lagerringe immer fest und gleichmäßig über den Umfang und die Breite der Ringe unterstützen!

Mindestdicke s für Klemmringe und Anschlussflansche nicht unterschreiten, Tabelle Anschlussmaße, Bild 8!

Senkungen nach DIN 74, Form J, für Schrauben nach DIN 6912 sind zulässig. Für tiefere Senkungen muss die Dicke des Klemmrings s um das Maß der zusätzlichen Senktiefe erhöht werden.

Anschlussmaße siehe Tabelle und Bild 8, Mindestfestigkeit der Klemmringe siehe Tabelle Mindestfestigkeit.

Lagersitztiefe

Damit die Klemmringe das Lager sicher halten, muss die Lagersitztiefe t nach Tabelle ausgeführt werden, Tabelle Anschlussmaße und Bild 8.

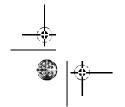
Achtung!

Die Tiefe des Lagersitzes beeinflusst das Lagerspiel und den Drehwiderstand!

Bei Lagem mit Vorspannung (Nachsetzzeichen VSP) ist der Drehwiderstand grundsätzlich höher!

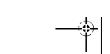
Werden besondere Anforderungen an den Drehwiderstand gestellt, sollte die Tiefe t in Abstimmung mit der jeweiligen Höhe des Lagerringes gefertigt werden. Dabei hat sich bewährt, die Tiefe t mit den gleichen oder weiter eingeengten Abmaßen wie das Maß h in den Maßtabellen zu tolerieren. Zur Sicherheit sollten in diesem Fall

jedoch eigene Versuche durchgeführt werden.

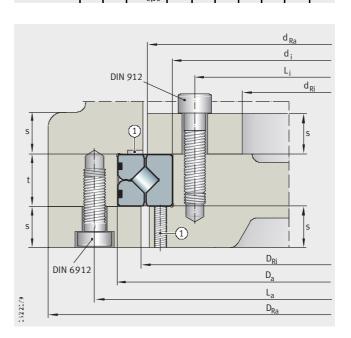

Mindestfestigkeit der Klemmringe

Für Schrauben 10.9 muss die Mindestfestigkeit unter den Schraubenköpfen bzw. Muttern 500 N/mm² betragen. Bei diesen Schrauben sind keine Unterlegscheiben notwendig.

Bei Befestigungsschrauben 12.9 darf die Mindestfestigkeit von 850 N/mm 2 nicht unterschritten werden oder es müssen vergütete Unterlegscheiben unter den Schraubenköpfen bzw. Muttern verwendet werden.

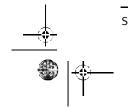


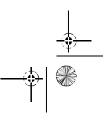
810 | HR 1



Anschlussmaße

Kurzzeichen	Ansc	hlussı	maße							
	d _i	D _a	t	S	d_{RA}	d_{Ri}	D_{Ri}	D_{Ra}	Li	La
	h7	K7		min.					max.	min.
	(h6)	(K6)								
SX011814	70	90	$10^{-0,005}_{-0,015}$	8	78	42	82	118	60	100
SX011818	90	115	13 ^{-0,005} _{-0,020}	10	100	61	104	144	80	125
SX011820	100	125	13-0,005	10	110	71	114	154	90	135
SX011824	120	150	$16^{-0,005}_{-0,025}$	12	132	84	138	186	108	162
SX011828	140	175	18 ^{-0,005} _{-0,030}	14	154	94	160	221	124	191
SX011832	160	200	$20^{-0,02}_{-0,05}$	15	177	111	183	249	144	216
SX011836	180	225	$22^{-0,02}_{-0,05}$	17	199	121	205	284	160	245
SX011840	200	250	24 ^{-0,02} _{-0,06}	18	221	139	229	311	180	270
SX011848	240	300	28 ^{-0,02} _{-0,06}	21	226	166	274	374	216	324
SX011860	300	380	$38^{-0,04}_{-0,10}$	29	335	201	345	479	268	412
SX011868	340	420	$38^{-0,04}_{-0,10}$	29	375	241	385	519	308	452
SX011880	400	500	$46^{-0,04}_{-0,10}$	35	445	275	455	625	360	540
SX0118/500	500	620	56 ^{-0,04} _{-0,10}	42	554	350	566	700	452	668





①Nuten, Abdrückgewinde o.ä. für den Ausbau

Bild 8 Klemmringe, Lagersatztiefe, Anschlussmaße

Befestigungsschrauben

Zur Befestigung der Lager- oder Klemmringe sind Schrauben der Festigkeitsklasse 10.9 geeignet, siehe Tabelle Befestigungsschrauben.

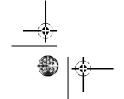
Achtung!

Abweichungen von der empfohlenen Abmessung, der Festigkeitsklasse und der Anzahl der Schrauben reduzieren die Tragfähigkeit und Gebrauchsdauer der Lager erheblich!

Bei Schrauben 12.9 Mindestfestigkeit der Klemmringe beachten bzw. vergütete Unterlegscheiben verwenden!

Befestigungsschrauben

Kreuzrollenlager		Befestigungsschrauben Festigkeitsklasse 10.9					
	Abmessung	Anzahl	M _A Nm				
SX011814	M5	18	7				
SX011818	M5	24	7				
SX011820	M5	24	7				
SX011824	M6	24	11,7				
SX011828	M8	24	27,8				
SX011832	M8	24	27,8				
SX011836	M10	24	55,6				
SX011840	M10	24	55,6				
SX011848	M12	24	98,4				
SX011860	M16	24	247				
SX011868	M16	24	247				
SX011880	M20	24	481				
SX0118/500	M24	24	831				


Normalerweise sind die Schrauben durch die richtige Vorspannung ausreichend gesichert. Bei regelmäßigen Stoßbelastungen oder Vibrationen kann jedoch eine zusätzliche Schraubensicherung notwendig sein.

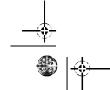
Achtung!

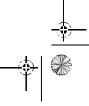
Nicht jede Schraubensicherung ist für Kreuzrollenlager geeignet! Niemals Spannscheiben oder Federringe verwenden!

Allgemeine Informationen zu Schraubensicherungen sind in DIN 25 201, spezielle zum Sichem mit Klebstoff in DIN 25 203, Ausgabe 1992, aufgeführt.

Im Anwendungsfall bitte bei den entsprechenden Fachfirmen anfragen.

Anziehdrehmomente M_A für das drehmomentgesteuerte Anziehen von Schaftschrauben


Befestigungs- schraube	Spannungs- querschnitt	Kern- querschnitt	Anziehdre M _A ¹⁾ in Nn Festigkeit		
	A _s mm ²	A _{d3} mm ²	8.8	10.9	12.9
M4	8,78	7,75	2,25	3,31	3,87
M5	14,2	12,7	4,61	6,77	7,92
M6	20,1	17,9	7,8	11,5	13,4
M8	36,6	32,8	19,1	28	32,8
M10	58	52,3		55,8	65,3
M12	84,3	76,2	66,5	97,7	114
M14	115	105	107	156	183
M16	157	144	168	246	288
M18	192	175	229	336	394
M20	245	225	327	481	562
M22	303	282	450	661	773
M24	353	324	565	830	972


Montagevorspannkräfte F_M für das drehmomentgesteuerte Anziehen von Schaftschrauben

Befestigungs- schraube	Spannungs- querschnitt	Kern- querschnitt	Montagevorspannkraft F _M ¹⁾ in kN für Festigkeitsklasse				
	A _s mm ²	A _{d3} mm ²	8.8	10.9	12.9		
M4	8,78	7,75	4,05	5,95	6,96		
M5	14,2	12,7	6,63	9,74	11,4		
M6	20,1	17,9	9,36	13,7	16,1		
M8	36,6	32,8	17,2	25,2	29,5		
M10	58	52,3	27,3	40,2	47		
M12	84,3	76,2	39,9	58,5	68,5		
M14	115	105	54,7	80,4	94,1		
M16	157	144	75,3	111	129		
M18	192	175	91,6	134	157		
M20	245	225	118	173	202		
M22	303	282	147	216	253		
M24	353	324	169	249	291		

 $^{^{1)}}$ $\overline{F_{M}$ nach VDI-Richtlinie 2 230 (Juli 1986) für μ_{G} = 0,12.

 $^{^{1)}}$ $\overline{M_{A}$ nach VDI-Richtlinie 2 230 (Juli 1986) für μ_{K} = 0,08 und μ_{G} = 0,12.

Kreuzrollenlager einbauen

Die Bohrungen und Kanten der Anschlussbauteile müssen gratfrei sein. Die Auflageflächen für die Lagerringe müssen sauber sein.

Sitz- und Anlageflächen der Lagerringe an der Anschlusskonstruktion leicht ölen oder fetten.

Gewinde der Befestigungsschrauben leicht ölen, um unterschiedliche Reibungsfaktoren zu verhindern (Schrauben, die mit Klebstoff gesichert werden, nicht ölen oder fetten).

Achtung!

Sicherstellen, dass alle Anschlussbauteile und Schmierstoffkanäle frei von Reinigungs-, Lösungsmitteln und Waschemulsionen sind! Die Lagersitzflächen können rosten oder das Laufbahnsystem kann verunreinigt werden!

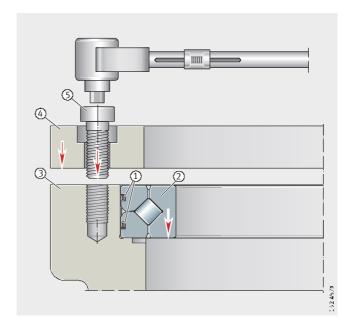
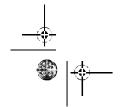
Montagekräfte nur auf den zu montierenden Lagerring aufbringen; Kräfte niemals über Wälzkörper oder Dichtungen leiten! Direkte Schläge auf die Lagerringe unbedingt vermeiden! Lagerringe nacheinander und ohne äußere Last befestigen!

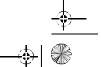
Der Außenring ist gesprengt und durch drei Halteringe 1 zusammengehalten, Bild 9! Halteringe niemals auf Zug belasten!

äußeren Lagerring befestigen

Einbau des Rings, siehe Bild 9:

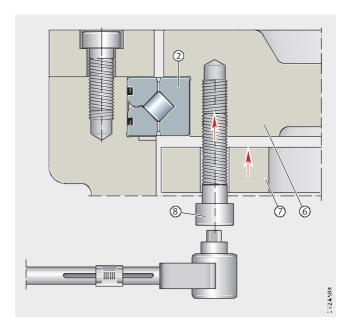
- Lager 2 mit dem Außenring in die äußere Anschlusskonstruktion (3) einführen oder einpressen
- Äußeren Klemmring ④ positionieren
- Befestigungsschrauben ⑤ in den Klemmring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment MA anziehen
 - Schrauben über Kreuz anziehen, damit keine unzulässigen Schwankungen zwischen den Schraubenspannkräften
 - $-\,$ Anziehdrehmomente $\rm M_A$ für Befestigungsschrauben siehe Tabellen, Seite 813.


Bild 9 äußeren Lagerring befestigen

814 | **HR 1**

Schaeffler Gruppe Industrie



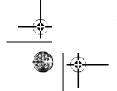
inneren Lagerring befestigen

Einbau des Ringes, siehe Bild 10:

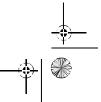
- Lager ② in die innere Anschlusskonstruktion ⑥ einsetzen
- Inneren Klemmring ⑦ positionieren
- $\hfill \blacksquare$ Befestigungsschrauben \circledR in den Klemmring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment MA anziehen
 - Schrauben über Kreuz anziehen, damit keine unzulässigen Schwankungen zwischen den Schraubenspannkräften auftreten.

Funktion prüfen

Nach beendeter Montage muss der Lauf des eingebauten Kreuzrollenlagers kontrolliert werden.

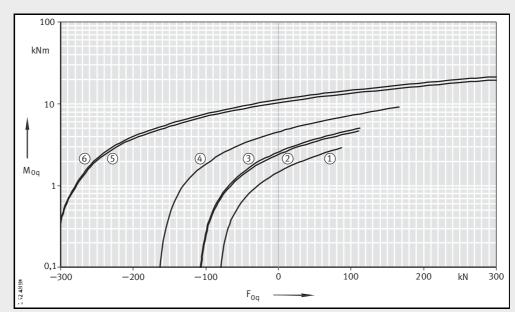

Achtung!

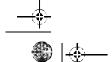
Läuft das Lager ungleichmäßig, rau oder steigt die Temperatur am Lager ungewöhnlich hoch an, Lager ausbauen, überprüfen und nach den beschriebenen Einbaurichtlinien neu einbauen!


Genauigkeit

Die Maß- und Lauftoleranzen sind an DIN 620-2 und DIN 620-3 angelehnt und liegen im Bereich P6 und P5.

Die Hauptabmessungen entsprechen DIN 616, Maßreihe 18.




Maßtabelle · Abmessungen in mm														
Kurzzeichen	Kurzzeichen Posi- tion ¹⁾ Masse Abmessungen											Laufgenauigkeit		
		m	D _M	d _i	D _a	H ²⁾	h ²⁾	d _a	D _i	r	S ³⁾	radial	axial	
		≈kg		K6	h6		E8			min.				
SX011814	1	0,3	80	70 ^{+0,004} _{-0,015}	90 _{-0,022}	10±0,10	10_0,01	79,5	80,5	0,6	1,2	0,010	0,010	
SX011818	2	0,4	102	90+0,004	115-0,022	13±0,12	13-0,01	101,5	102,5	1	1,2	0,010	0,010	
SX011820	3	0,5	112	100 ^{+0,004} _{-0,018}	125-0,025	13±0,12	13 _{-0,01}	111,5	112,5	1	1,2	0,010	0,010	
SX011824	4	0,8	135	120 ^{+0,004} _{-0,018}	150_0,025	16±0,12	16-0,01	134,4	135,6	1	1,5	0,010	0,010	
SX011828	⑤	1,1	157	140 ^{+0,004} _{-0,021}	175 _{-0,025}	18±0,12	18-0,01	156,3	157,7	1,1	1,5	0,015	0,010	
SX011832	6	1,7	180	160 ^{+0,004} _{-0,021}	200-0,029	20±0,12	20_0,025	179,2	180,8	1,1	1,5	0,015	0,010	

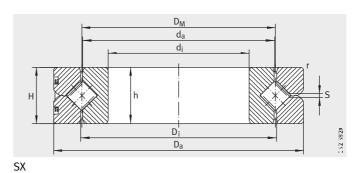
⁴⁾ Tragzahlen radial: nur für rein radiale Belastung.

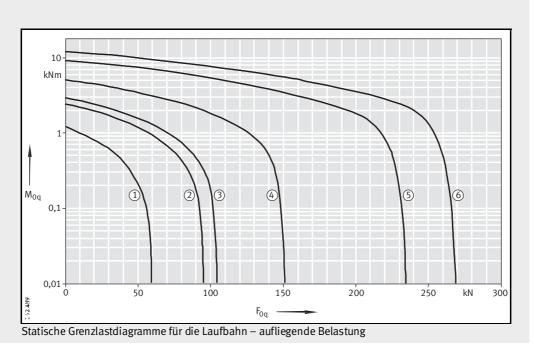
Statische Grenzlastdiagramme für die Befestigungsschrauben – aufliegende Belastung

Schaeffler Gruppe Industrie

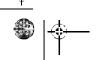
816 | **HR 1**

²⁾ H: Bauhöhe des Lagers, h: Höhe des einzelnen Ringes.


 $^{^{3)}}$ Schmierbohrung: 3 Bohrungen gleichmäßig am Umfang verteilt.

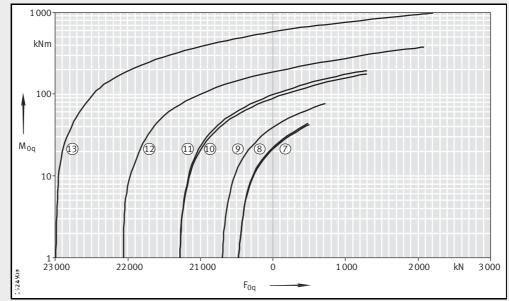


Normalspiel				Spiela RLO	rm	Vorspa VSP	Vorspannung VSP		Tragzahlen				Grenzdrehzahlen			
radiales Spiel		axiales Kippspiel		radi- ales	Vor- span-			axial radial ⁴⁾		bei Normalspiel		bei Vorspannung		gleich mit ISO- Maß-		
				Spiel	nung				stat. C _{0a}	dyn. C _r	stat. C _{0r}	n _G Öl	n _G Fett	ŭ	n _G Fett	
min.	max.	min.	max.	max.	max.	min.	max.	kN	kN	kN	kN	${\rm min}^{-1}$	${\rm min}^{-1}$	min ⁻¹	min ⁻¹	
0,003	0,015	0,006	0,03	0,003	0,006	0,003	0,015	18	60	12	30	1 910	955	955	475	61814
0,003	0,015	0,006	0,03	0,003	0,006	0,003	0,015	26	96	17	47	1 500	750	750	375	61818
 0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	28	106	18	52	1 360	680	680	340	81820
0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	41	153	26	75	1 130	565	565	280	61824
0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	64	237	41	116	975	485	485	240	61828
0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	69	272	44	133	850	425	425	210	61832



Schaeffler Gruppe Industrie

HR 1 | 817

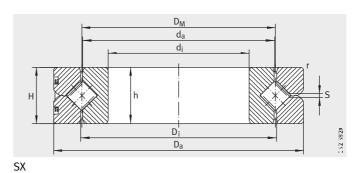


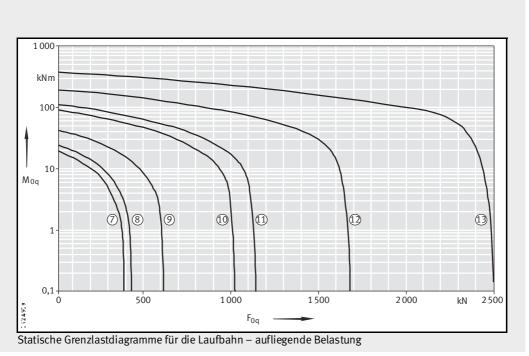
Kurzzeichen	Posi- tion ¹⁾	Masse	Masse Abmessungen												
				Ü	Laufgenauigkeit										
		m	D_{M}	d _i	D _a	H ²⁾	h ²⁾	d _a	D _i	r	S ³⁾	radial	axial		
		≈kg		K6	h6		E8			min.					
SX011836	7	2,3	202	180 ^{+0,004} _{-0,021}	225_0,029	22±0,13	22_0,025	201,2	202,8	1,1	2	0,015	0,010		
SX011840	(8)	3,1	225	200+0,004	250-0,029	24±0,13	24-0,025	224,2	225,8	1,5	2	0,015	0,010		
SX011848	9	5,3	270	240 ^{+0,005} _{-0,024}	300_0,032	28±0,13	28-0,025	269,2	270,8	2	2	0,020	0,010		
SX011860	10	12	340	300 ^{+0,005} _{-0,027}	380 _{-0,036}	38±0,14	38 _{-0,05}	339,2	340,8	2,1	2,5	0,020	0,010		
SX011868	11)	13,5	380	340 ^{+0,007} _{-0,029}	420_0,040	38±0,14	38 _{-0,05}	379,2	380,8	2,1	2,5	0,025	0,010		
SX011880	12	24	450	400+0,007	500-0,040	46±0,15	46-0,05	449	451	2,1	2,5	0,030	0,010		
SX0118/500	(13)	44	560	500 ^{+0,008} _{-0,032}	620_0,044	56±0,16	56 _{-0,05}	558,8	561,2	3	2,5	0,040	0,010		

⁴⁾ Tragzahlen radial: nur für rein radiale Belastung.

Statische Grenzlastdiagramme für die Befestigungsschrauben – aufliegende Belastung

²⁾ H: Bauhöhe des Lagers, h: Höhe des einzelnen Ringes.


 $^{^{3)}}$ Schmierbohrung: 3 Bohrungen gleichmäßig am Umfang verteilt.



	Normalspiel				Spiela RLO	rm	Vorspannung VSP		Tragzahlen				Grenzdrehzahlen				abmes- sungs-
radiales Spiel		axiales Kippspiel		radi- ales	Vor- span-	axial			radial ⁴⁾		bei Normalspiel		bei Vorspannung		gleich mit ISO- Maß-		
					Spiel	nung			dyn. C _a	stat. C _{0a}	dyn. C _r	stat. C _{0r}	n _G Öl	n _G Fett	n _G Öl	n _G Fett	
	min.	max.	min.	max.	max.	max.	min.	max.	kN	kN	kN	kN	${\rm min}^{-1}$	${\rm min}^{-1}$	min ⁻¹	min ⁻¹	
	0,005	0,025	0,010	0,05	0,005	0,010	0,005	0,025	98	381	63	187	755	375	375	185	618 36
	0,005	0,025	0,010	0,05	0,005	0,010	0,005	0,025	106	425	68	208	680	340	340	170	618 40
	0,010	0,030	0,020	0,06	0,005	0,010	0,005	0,025	149	612	95	300	565	280	280	140	618 48
	0,010	0,040	0,020	0,08	0,005	0,010	0,005	0,025	245	1 027	156	504	450	225	225	110	618 60
	0,010	0,040	0,020	0,08	0,005	0,010	0,005	0,025	265	1 148	167	563	400	200	200	100	618 68
	0,010	0,050	0,020	0,10	0,005	0,010	0,005	0,025	385	1 699	244	833	340	170	170	85	618 80
	0,015	0,060	0,030	0,12	0,006	0,012	0,005	0,030	560	2 538	355	1 244	275	135	135	65	618/500

Schaeffler Gruppe Industrie

HR 1 | 819

